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An n-labeled complete digraph G is a complete digraph with n + 1 vertices and n(n + 1) edges 

labeled { 1,2, . . . , n} such that there is a unique edge of each label emanating from each vertex. 

A sequence S in { 1,2, . . . , n} * and a starting vertex of G define a unique walk in G, in the obvious 

way. Suppose S is a sequence such that for each such G and each starting point in it, the 

corresponding walk contains all the vertices of G. We show that the length of S is at least Q(n2), 

improving a previously known n(n log2n/loglogn) lower bound of Bar-Noy, Borodin, 

Karchmer, Linial and Werman. 

1. Introduction 

For n I 2 an n-labeled complete directed graph G is a directed graph with n + 1 
vertices and n(n + 1) directed edges, where a unique edge emanates from each vertex 
to each other vertex. The edges are labeled by { 1,2, . . . , n} in such a way that the 
labels of the edges leaving each vertex form a permutation of the set { 1,2, . . . , n}. 
Let G(n) denote the set of all such n-labeled complete directed graphs. A sequence 
s=s,sz . . . skin {1,2,..., n}* and a starting vertex o. of a graph G in G(n) define a 
unique sequence u. u1 o2 . . . uk of vertices of G, where (Ui_ 1, Ui) is labeled Si for 
1 I is/c. We say that S (with the starting point uo) covers the set of vertices 

{ uo, ul, . . . , uk}. S covers a graph GE G(n) if it covers the set of all its vertices, in- 
dependent of the starting point. A sequence S is universal for G(n) if it covers every 
G in G(n). Finally, let V(n) denote the minimal length of a universal sequence for 

G(n). 
The concept of universal sequences for general (not necessarily complete) graphs 

was introduced in [1,2], where the motivation was that these sequences supply a 
nonuniform method to test connectivity in logarithmic space (see also [5] for some 
related results). Universal sequences for complete graphs are studied in [3], where 
the authors show that 

fl(n log2n/log log n) 5 U(n) 5 O(n310g2n). 

0166-218X/90/$3.50 0 1990, Elsevier Science Publishers B.V. (North-Holland) 



26 N. Alon et al. 

In this paper we improve the lower bound (and also observe that the upper bound 

can be slightly improved) by proving the following theorem. 

Theorem 1. Q(n2) I U(n) I 0(n310g n). 

This theorem is proved in Section 2. Section 3 contains some concluding remarks. 

2. The length of universal sequences for complete graphs 

We start with the easy upper bound. Put k= r3n310g,nl and let S=sls2 . . . s, be 

a random sequence of length k, where each si E { 1,2, . . . , n} is chosen independently 

according to a uniform distribution on { 1,2, . . . , n}. Fix a labeled graph G = 

(V,:E) E G(n), a starting point u. E I’ and another vertex u. # u E V. The probability 

that S, with the starting point u. does not cover u is clearly 

(l- l/&(1 _ 1/,)3nZlogn~,-3nZlogn = n-3n*. 

The number of choices for G, u. and u is (n!)“+‘.(n+l).n<n”(““).(n+l).n. 

Therefore, the probability that S fails to cover some member G of G(n) is at most 
n -32. &l+ 1) 

. (n + 1). n< 1. It follows that there exists a sequence S of length 

r3n310g n1 which is universal for G(n) (and, in fact, most sequences of this length 

are universal for G(n)). This completes the proof of the upper bound. 

To prove the lower bound, we show that 

U(n)rn2/25. (1) 

This is obvious for n125 (as U(~)LIZ), so we assume n>25. Put a=6= c=f. 

Suppose k<abn2, andlet S=s,s2...sk beasequencein {1,2,...,n}*. To prove(l), 

we construct a graph G = (I’, E) in G(n), with I/= { ui, u2, . . . , v, + 1} and show that S, 

with the starting point u1 will not cover u,+, . Put N= { 1,2, . . . , n} and let Z= 

(i E N: 1 {j: 1 <j 5 k, Sj = i} 12 bn} be the set of all numbers that appear at least bn 

times in S. Clearly III sun. It is well known (see, e.g. [4]) that the undirected com- 

plete graph on n vertices contains L+(n - l)] edge disjoint Hamilton cycles. It is thus 

possible to find 111 edge disjoint directed cycles of length n on the vertices 

{ 01, u2, ... 5 u,} . Denote these cycles by {C;} iE !. For each i, iEZ, let us label all the 

edges of C;, and the edge (u,+ ,, u;) by i. (Notice that no other edges will be labeled 

i, as we already have now a unique edge labeled i emanating from every vertex.) We 

have now defined some of the labels of the edges of G. We continue to label edges 

of G by using the sequence S, as follows. Starting from u,, we begin to walk along 

the path defined by S on the (partially labeled) graph G. If we are in a vertex U, the 

current sequence element is s, and there is an edge (u, o) labeled s, we move, of 

course, to u. On the other hand, if there is no outgoing edge from u labeled s, then 

we label some unlabeled edge that emanates from u by s (and continue our walk by 

moving along this edge). Let us call each such labeling a labeling step. The choice 
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of the particular edge that will be labeled s is done carefully, as described below. 

Let H denote the subdigraph consisting of all labeled edges. At the beginning, H 
contains only the II 1 (n + 1) edges labeled by the elements i E I, and as we proceed 

H grows, while maintaining the following properties. 

Property 0. The indegree of v, + , in H is 0. 
Property 1. The outdegree of each vertex in H is at most (a + c)n. 

Property 2. Each sign which does not belong to I causes a labeling step. 

Note that to complete the proof it is enough to show that we can maintain all the 

three properties until we reach the end of S. Indeed, label the edges of the complete 

directed graph that are not in H arbitrarily to obtain a member G of G(n). Consider 

the walk defined by S on G, starting from vl. By Property 0, this walk does not 

cover v, + , and hence S is not universal, as needed. It thus remains to show that we 

can maintain all three properties. Clearly they hold at the beginning, when H con- 

tains only the II 1 (n + 1) edges labeled by the numbers in I. To show that we can 

maintain all three properties, consider a labeling step in which we have to choose 

a new edge (u, v) emanating from a vertex u and label it by a label s=sj. Clearly 

s is not in I. Suppose that after this label there are kr 0 signs in the sequence which 

belong to Z and then a sign t which does not. (The case that there is no such t is 

simpler.) There are less than bn vertices with an edge labeled t already emanating 

from them. Since each sign in I defines a permutation, for each of these vertices w 

there is a unique vertex x such that if we go to x at the present labeling step, the 

sequence will take us to the vertex w after the following k steps. Since we wish to 

maintain Property 2, we are not allowed to choose our destination u in the present 

labeling step as any of these vertices X. However, there are at most bn such vertices, 

by the argument above. The outdegree of u is at most (a + c)n and hence there are 

still at least (1 - a - b - c)n - 1 vertices other than u and v, + , to which we can go 

without violating Property 2 in the next labeling step. Each choice for such a vertex 

will lead us to a unique vertex in the next labeling step. It is impossible that each 

of these vertices has already outdegree bigger than (a + c)n - 1, since otherwise, we 

have already made at least (cn - l)((l -a-b - c)n - l)>abn’ labeling steps, and 

this is more than the total length of the given sequence. Therefore there is a choice 

for u which will maintain Property 1 for the next labeling step and we can, indeed, 

maintain all properties. This implies inequality (1) and completes the proof of the 

theorem. 0 

3. Concluding remarks 

For 2 ids m - 1, dm even, let H(d, m) denote the class of all connected d-regular 

graphs with m vertices. Let G(d,m) denote the class of all edge labeled directed 

graphs obtained from a member of H(d,m) by replacing each of its edges by two 

oppositely directed edges, where the edges are labeled { 1,2, . . . , d > such that there 
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is precisely one edge labeled i emanating from every vertex (1~ is d). In particular 

G(n, n + 1) is simply the class G(n) of n-labeled complete directed graphs considered 

in this paper. A sequence S in { 1,2, . . . , cl}* and a starting vertex u of a member G 

of G(d, m) define, as before, a unique walk in G, which covers G if it contains every 

vertex of it. A universal sequence for G(d, m) is a sequence that covers any member 

of G(d, m) from any starting point. Let U(d, m) denote the minimal length of a univer- 

sal sequence for G(d, m). In [3] it is shown that U(d, m) = Q(m log m + d(m -d)), and 

in [2] it is proved that U(d, m) = O(d2m310g m). Our previous proof (with a trivial 

modification) shows that U(d, m) 2 fI(m2) for all d> n(m). (In fact, the same proof 

and bound hold even for sequences which are universal only for all the labelings of 

one member of G(d, m).) This improves the above lower bound whenever m -d = 

o(m). 
It would be interesting to determine more accurately the asymptotic behavior of 

the functions U(d, m) and in particular that of U(n, n + 1) = U(n). The following 

conjecture seems plausible. 

Conjecture. limn+m U(n)/n2 = 03. 
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